
WHITEPAPER | DOCKER AND THE THREE WAYS OF DEVOPS

Docker and the Three
Ways of DevOps
Author: John Willis, Docker

W H I T E P A P E R / 2

WHITEPAPER | DOCKER AND THE THREE WAYS OF DEVOPS

Table of Contents

Forward 3

Executive Summary 4

The First Way: Systems Thinking 4

Docker and the First Way 5

 Velocity 5

 Variation 5

 Visualization 6

The Second Way: Amplify Feedback Loops 6

Docker and the Second Way 6

 Velocity 6

 Variation 7

 Visualization 7

The Third Way: Continuous Learning 7

Docker and the Third Way 8

W H I T E P A P E R / 3

WHITEPAPER | DOCKER AND THE THREE WAYS OF DEVOPS

Forward
I had the privilege of meeting John Wills at DevOpsDays Mountain View in 2010, and it was an interaction that I’ll never forget. I was still
trying to figure out what this whole DevOps movement was all about, and it popped into focus when he told me, “IT operations has been
lost at sea for thirty years — DevOps is how we can finally find our way back.”

In that moment, I knew he was a kindred spirit who had seen the same problems that I had, and that DevOps principles and patterns allow IT
organizations to escape the almost inevitable downward spiral that occurs when Dev and Ops don’t work together towards common goals.

I’m privileged that I’ve been able to work with John Willis on so many projects, including the upcoming DevOps Cookbook
[http://itrevolution.com/books/devops-cookbook/], where we further describe the Three Ways, which are the set of principles from which
we can derive all the observed DevOps behaviors that allow the sustained fast flow from Dev through Ops to the customer, while preserving
world-class reliability, stability, and security. By doing this, organizations are able to maximize developer productivity, enable organizational
learning,and the ability to win in the marketplace.

In this paper, John extends the Three Ways into the emerging age of containers and Docker. I trust you’ll find it as provocative and useful as
I did!

Gene Kim, July 2015

W H I T E P A P E R / 4

WHITEPAPER | DOCKER AND THE THREE WAYS OF DEVOPS

Executive Summary

DevOps is a mindset, a way of thinking, versus a set of processes
implemented in a specific way. The goal of all DevOps organiza-
tions are the same: to improve the quality and speed at which in-
novation is delivered. What began an experiment has transformed
into a movement to bring together software development and the
operations to run the software closer together. Over the years,
industry leaders and DevOps practitioners have come together to
identify patterns and best practices so that successful methods
are shared to the next wave of DevOps practitioners.

Three principles known as “The Three Ways of DevOps” have
been identified and these are principles that all other Devops pat-
terns can be derived from. The Three Ways of DevOps include:
systems thinking, amplifying and shortening feedback loops and
continuous learning.

These principles describe the values and philosophies that frame
the processes, procedures, practices of DevOps, as well as the
prescriptive steps. The capabilities of the Docker platform with
containerized compute, storage and networking for distributed
applications provide promising results when applied to the Three
Ways of DevOps principles. From exponential speed to and ve-
locity to streamlining the feedback loop and collaboration across
teams.

Key takeaways from this paper include:
• A deeper understanding of Three Ways of DevOps

principles and their purpose
• How to apply these principles with Docker into your

organization
• Examples of results and benefits from other practitioners’

experiences

The First Way:
Systems Thinking

Systems thinking is defined as the “First Way” of DevOps. This is
defined as flow and direction from left to right, sometimes referred
to as a pipeline. It is important to understand the system as a
complete value stream.

Managing this flow is also referred to as global optimization or
bottleneck reduction. In DevOps jargon, this is known as the time
it takes to get from “A-Ha to the Cha-Ching”. In Lean, it is referred
to as “Lead Time”. This is synonymous with the time it takes to
get from a whiteboard diagram to a paying customer feature or
the time it takes to transform the things that people make into the
things that people buy.

To be effective at the “”First Way””, you need to be able to apply in-
creased velocity to all of the local processes while not slowing down
the global flow. This requires attention to three main principles:

1. Increase “velocity” by accelerating each of the process
components in the pipeline.

2. Decrease “variation” by eliminating wasteful or time
consuming sub processes in the pipeline.

3. Elevate the processes by bounded context (isolating the
functionality) therefore better visualizing and understanding
the global flow (e.g. seeing the system).

What does Docker have to do with all of this?

xiningwang
Highlight

xiningwang
Highlight

xiningwang
Highlight

xiningwang
Highlight

xiningwang
Highlight

xiningwang
Highlight

xiningwang
Highlight

W H I T E P A P E R / 5

WHITEPAPER | DOCKER AND THE THREE WAYS OF DEVOPS

Docker and the First Way

Velocity
Developer Flow

Developers who use Docker typically create a Docker environment
on their laptop to locally develop and test applications in contain-
ers. In this environment, they can test a service stack made up
of multiple Docker containers. Container instances spin up at an
average of around 500 milliseconds. Multiple Docker contain-
ers converged as a single service stack, like a LAMP stack, can
take seconds to instantiate. Convergence is the interconnection
information that needs to be configured between the instances,
for example a database connection info or load balancer IP’s.
Contrast this to non-container virtual instances running as multiple
hosts. An alternative non-containerized environment can take any-
where from 2 to 10 minutes to spin up and converge depending
on the complexity. The end result with Docker is that developers
experience less context switch time for testing and retesting and
resulting in significantly increased velocity.

Integration Flow

Docker can streamline a continuous integration (CI) with the use
of Dockerized build slaves. A CI system can be designed such
that multiple virtual instances each run as individual Docker hosts
as multiple build slaves, for example. Some environments run a
Docker host inside of a Docker host (Docker-in-Docker) for their
build environments. This creates a clean isolation of the build out
and breakdown environments for the services being tested. In this
case, the original virtual instances are never corrupted because
the embedded Docker host can be recreated for each CI slave
instance. The inner Docker host is just a Docker image and in-
stantiates at the same speed as any other Docker instance.

Just like the developers’ laptop, the integrated services can run
as Docker containers inside these build slaves. Not only are there
exponential efficiencies in the spin up times of the tested service,
there are also the benefits of rebasing multiple testing scenarios.
Multiple tests starting from the same baseline can be run over and
over in a matter of seconds. The sub-second Docker container
spin-up times allow scenarios where thousands of integration tests
occur in minutes that would otherwise take days to complete.

Docker also increases velocity for CI pipelines with Union FileSys-
tems and Copy on Write (COW). Docker images are created using
a layered file system approach. Typically only the current (top)
layer is a writable layer (COW). Advanced usage of baselining and
rebasing between these layers can also increase the lead time
for getting software through the pipeline. For example, a specific
MySQL table could be initialized at a certain state and could be
rebased back to the original state in the container image for each
test therefore providing multiple tests with accelerated efficiencies.

Deployment Flow

To achieve increased velocity for Continuous Delivery (CD) of
software, there are a number of techniques that can be impacted
by the use of Docker. A popular CD process called “Blue Green
deploys” is often used to seamlessly migrate applications into
production. One of the challenges of production deployments is
ensuring seamless and timely changeover times (moving from one
version to another). A Blue Green deploy is a technique where
one node of a cluster is updated at a time (i.e., the green node)
while the other nodes are still untouched (the blue nodes). This
technique requires a rolling process where one node is updated
and tested at a time. The two key takeaways here are: 1) the total
speed to update all the nodes needs to be timely and 2) if the
cluster needs to be rolled back this also has to happen in a timely
fashion. Docker containers make the roll forward and roll back
process more efficient. Also, because the application is isolated
in a container, this process is much cleaner with far less moving
parts involved during the changeover. Other deployment tech-
niques like dark launches and canarying can benefit from Docker
container isolation and speed, all for the same reasons described
earlier.

Variation
A key benefits of using Docker images in a software delivery pipe-
line is that both the infrastructure and the application can both be
included in the container image. One of the core tenants of Java
was the promise of “write once run anywhere”. However, since
the Java artifact (typically a JAR, WAR or EAR) only included the
application there was always a wide range of variation, depending
on the Java runtime and the specific operating environment of the
deployment environment. With Docker, a developer can bundle
the actual infrastructure (i.e. the base OS, middleware, runtime
and the application) in the same image. This converged isolation
lowers the potential variation at every stage of the delivery pipeline
(dev, integration and production deployment). If a developer tests
a set of Docker images as a service on a laptop, those same ser-
vices can be exactly the same during the integration testing and
the production deployment. The image (i.e., the converged arti-
fact) is a binary. There should be little or no variation of a service
stack at any of the stages of the pipeline when Docker containers
are used as the primary deployment mechanism. Contrast this to
environments that have to be built at each stage of the pipeline.
Alternatively, configuration management and release engineer
scripting are often used at each stage of the pipeline to build
out the service. Although most automation mechanisms are far
more efficient than a checklist built service, they still run the risk of
higher variation than binay Docker service stacks. These alterna-
tives to Docker containers can yield wider variances of stability
therefore increasing variation. A Dockerized pipeline approach de-
livers converged artifacts as binaries and therefore are immutable
starting from the commit.

W H I T E P A P E R / 6

WHITEPAPER | DOCKER AND THE THREE WAYS OF DEVOPS

As an example, Gilt Group uses Docker as a primary deployment
mechanism. Gilt makes use of a microservices architecture in a
delivery pattern of what they call an immutable infrastructure. In
other words, artifacts in their production environments are not
updated. Infrastructure is always replaced. Meaning they either
roll forward or roll backwards. Gilt demonstrated how a developer
packages a set of container binaries and then provides one meta
file (a Docker run description file) to the pipeline. Everything in the
bundle is self contained. Prior to their Dockerized deployment
process, Gilt had a repo of over 1000 release engineering build
scripts managing over 1000 different repos of software and with
25 different deployment models. This old process created a wide
range of variation in the pipeline. Discovery and ownership of the
scripts often created bottlenecks in the pipeline. It was unclear
what to do with break fix situations because of the variation in
the process. A classic “DevOps” adage is having the developers
get paged when an issue occurs whenfor production application
issues. In the case of Gilt, not only do the developers wear pagers
for escalations, they also have ownership of the complete embed-
ded infrastructure.

Visualization
A new model of disruption in our industry is called Container-
ized Microservices. In a microservices architecture “services” are
defined as bounded context. These are services that model real
world domains. There might be a service domain called finance or
warehouse in a microservices architecture. When these bounded
services are coupled as Docker containers and used as part of
the delivery pipeline, they are immediately visible as real word
domains. From an “DevOps” operational aspect, one of the keys
to success is an organization MTTR (Mean time to Repair/Restore)
metric. When services are bounded by their business context and
then isolated as Dockerized containers they become elevated (i.e.,
visual) in the pipeline. This increased visibility can help an organi-
zation isolate, discover and determine proper ownership faster;
therefore decreasing their overall MTTR.

The “First Way”” and Docker can provide global optimization
around software Velocity, Variation and Visualization. Dockerizing
the development pipeline, organizations can reduce the cost and
risk of software delivery while increasing the rate of change.

The Second Way: Amplify
Feedback Loops

The “Second Way” is defined as amplifying and shortening feed-
back loops such that corrections can be made fast and continu-
ously. This is sometimes referred to as the right to left flow.

A defect is not a defect unless it hits the customer. Lean principles
teach us that the earlier a potential downstream defect is dis-
covered, the less costly it will be to the overall cost of the service
delivery. Therefore the three V’s also apply in the “Second Way”.
Velocity of a correction in the flow is essential. Variation also plays
a role with the complexity of the infrastructure, where the defect
has been identified needs to be simpler so that it requires less
time to detect. Lastly, software artifacts need to be elevated and
bounded (i.e., visual) to their source (e.g., source code, source
code repository) in order to decrease the overall Lead Time of a
service delivered.

Docker and the Second
Way

Velocity
Much like velocity in the “”First Way””, in the “Second Way” it is
about speed with direction. The important thing to remember
about flow is that it’s not always going in the same direction. There
are interrupts in the flow due to defects and the potential change-
over time related to the defect. To be effective at this “Second
Way”, DevOps need to have velocity in both directions (i.e., the
complete feedback loop). How fast can the changeover occur?
How adaptive is the process for not only quick defect detection
but how fast can the system be reimplemented and rebased
to the original baseline conditions? In Lean, there is something
called the Andon Cord that was used to stop the production line if
a defect was discovered in the production process. Because the
Andon Cord would actually stop the line, this was a metaphor for
the strength of the process.

W H I T E P A P E R / 7

WHITEPAPER | DOCKER AND THE THREE WAYS OF DEVOPS

It is the idea that pulling the cord could actually fix the defect and
make a difference. Under this premise, it was more likely that a
line worker would actually stop the line, even for minor defects,
because they knew the process to fix the defect was actually
streamlined. Docker’s streamlining of packaging, provisioning and
immutable delivery of artifacts allow an organization to take ad-
vantage of shortened changeover times due to defects and make
it easier to stop the line if a defect is detected.

Variation
Here again the advantages of using Docker in the “Second Way”
are similar to the advantaged outlined in the ““First Way”.” In this
example, it’s about the complexity of the infrastructure that is cre-
ated of where the defect is detected. A complex set of software
artifacts at scale can be fragile. Software-based services can be
made up of thousands of classes and libraries with many different
integration points. A slight delivery variation like how the full stack
was built, can be just enough to trigger a defect that can be very
difficult to detect. Good service delivery hygiene mandates that
all artifacts start as source in a version control system; however
rebuilding everything from source at every stage of the pipeline
might be just enough variation to trigger defect variants. A Docker
delivery and the use of immutable artifacts through the pipeline
reduces variation and therefore, reduces the risk of defect variants
later in the delivery pipeline.

Visualization
One of the advantages of an immutable delivery process is that
most of the artifacts are delivered throughout the pipeline as bina-
ries. This allows a service delivery team to create metadata from
the source that is maintained and can be visualized at any stage
of the pipeline. It is not uncommon to see developers embed GIT
SHA hashes related to the GIT Commit for a particular section of
code in the Docker image. Other techniques for including addi-
tional metadata about the software artifact can also be embedded
in the Docker image. R.I.Pienaar has a related blog post on his
devco.net site about embedding metadata inside every one of his
Docker images along with a couple of useful inspection scripts.
Below is a list of some of the operational metadata R.I. includes in
all of of his container images:

• Where and when was it built and why
• What was its ancestor images
• How do I start, validate, monitor and update it
• What git repo is being built, what hash of that git repo was

built
• What are all the tags this specific container is known as at

time of build
• What’s the project name this belongs to
• Have the ability to have arbitrary user supplied rich metadata

All of this is another form of a “Second Way” feedback loop.
When troubleshooting a discovered or potential defect, visualizing
embedded metadata can speed up the time required to correct
the defect and therefore, reduce the overall Lead Time of the
service being delivered.

The Third Way:
Continuous Learning

The “Third Way” of DevOps completes the full cycle. It has also
been referred to simply as “Continuous Learning”.

In DevOps speak, word Kaizen is often viewed as a method of
continuous improvement in an organization. This “Kaizen” being
achieved through a culture of continuous experimentation and
learning throughout all activities in an organization.

The “First Way” is about a left to right flow and systems thinking.
While the “Second Way” defines right to left feedback loops with
quick turnaround.

In this “Third Way”, the symbol of a complete loop is used
because it ties the first two ways together through a rigorous
implementation of a learning process.

source: The Deming Institute

xiningwang
Highlight

W H I T E P A P E R / 8

WHITEPAPER | DOCKER AND THE THREE WAYS OF DEVOPS

Organizations that follow the principle of the “Third Way” employ a
form of experiential learning. Edward Deming, a famous American
management thought leader; calls this the Plan Do Study Act
Cycle (PDSA). PDSA is rooted in principles of scientific method in
that every thing you do is a small experiment.

In 1999, Steven Spear and Kent Brown published an article in the
Harvard Business Review called “Decoding the DNA of the Toyota
Production System (TPS)”. TPS is well know as the birthplace of
Lean and it has been well established that DevOps inherits an
abundance of Lean principles. In the article, Spear and Brown
explained that TPS applied scientific method to everything that
happened in the plant. One of my favorite quotes from the article
is: “TPS is a community of scientists continuously experimenting”.

Mike Rother, author of Toyota Kata, takes this idea a step further.
Rother suggests that TPS leadership used PDSA cycles com-
bined with a vision (i.e., a true-north) as a set of coaching tools to
impose a sort of memory muscle through repetition (Kata). The
term Kata is a Japanese word used to describe choreographed
patterns of movements. Kata is used in the traditional Japanese
art of Kabuki as well as in martial arts.

Rother suggests that TPS would align all of their activities as
target conditions bound by a PDSA cycle always studying the
results of each experiment before proceeding with the next action
(the “A” in PDSA). They would ask the question in the “Study”
step of the cycle – Did the experiment produce results that moved
in the direction of the vision? These concepts of this “Third Way”
become the tools for implementing DevOps in an organization.

Docker and the Third
Way

In order for an organization to behave like a community of scien-
tists, it has to have reliable lab equipment. In the classical sense,
a scientists has a common set of equipment used while experi-
menting (test tubes, beakers, a microscope and of course safety
goggles). Docker is a great adjunct to the “Third Way”.

In the business of delivering software and services, speed to mar-
ket is essential. It’s not just how fast an organization can deliver
services, it’s how fast they can react and reproduce to a custom-
er’s validation of the delivered service.

In the previous sections , Docker is highlighted as a great solution
for achieving exponential speed. For example, a large financial
institution that is using Docker as a sort of “Container as a Ser-
vice” vehicle for their internal customers. They have over 100 data
scientists in their organization that have to constantly analyze large
sets of data with disparate context. These data scientists have to
match the right analysis tool to the right data. If they misjudge the
fit, a lot of time is wasted or worse, sub-optimum results can be
produced after a long running job.

Prior to implementing a Docker-based “Container as a Service”
solution, it was extremely hard for these scientists to match an
analysis tool to the data. Some analysis tool and data combina-
tions perform well with a tool like Hadoop while others data sets
are better suited for a tool like Spark while other sets work just fine
with something like R. The point being there are a lot of tools out
there for data analysis with new ones get added every other day.

This organization has created a sandbox environment of prebuilt
container images (i.e., Docker images) that encapsulate all of the
ingredients required to run the data analysis tool. The resulting
solution is that any data scientist in this organization can instanti-
ate a containerized set of data with a specific analysis tool (i.e., in
a container) in minutes and can confirm or reject the experiment
results in a two-order of magnitude less time.

Prior to implementing this Docker-based “Container as a Service”
offering, the lead time for experimenting the data-to-tool process
could take over two days of setup and request time to to deploy
the test. Now they can run through a set of experiments testing
multiple tools in a few hours.

Imagine the second order effects of this solution. Imagine that in
this organization, a data scientist might actually be able to try out
three or four different analysis tools before landing on a best-fit
solution for the larger data analysis project. While prior to the
“Container as a Service” offering, a data scientist might have just
settled on the first “just good enough” solution.

This model can be used as a pervasive solution for any process in
an organization that requires a similar selection process.

While the DevOps movement is a mindset at first, the major prin-
ciples all point to business outcomes like faster innovation, higher
quality and a feedback loop of continual learning. With the Three
Ways of Devops creating a pragmatic model, new practitioners
will have a higher rate of success. The Docker platform uniquely
allows organizations to apply tools into their application environ-
ment to accelerate the rate of change, reduce friction and improve
efficiencies.

WHITEPAPER | DOCKER AND THE THREE WAYS OF DEVOPS

www.docker.com

Copyright
© 2015 Docker. All Rights Reserved. Docker and the Docker logo are trademarks
or registered trademarks of Docker in the United States and other countries.
All brand names, product names, or trademarks belong to their respective holders.

